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Abstract: We propose and experimentally demonstrate an optical 
steganography method in which a data signal is transmitted using amplified 
spontaneous emission (ASE) noise as a carrier. The ASE serving as a carrier 
for the private signal has an identical frequency spectrum to the existing 
noise generated by the Erbium doped fiber amplifiers (EDFAs) in the 
transmission system. The system also carries a conventional data channel 
that is not private. The so-called “stealth” or private channel is well-hidden 
within the noise of the system. Phase modulation is used for both the stealth 
channel and the public channel. Using homodyne detection, the short 
coherence length of the ASE ensures that the stealth signal can only be 
recovered if the receiver closely matches the delay-length difference, which 
is deliberately changed in a dynamic fashion that is only known to the 
transmitter and its intended receiver. 
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1. Introduction 

With the increased accessibility of optical networks in the last decade, it is important that the 
communications over optical networks are properly secured. Recently, all-optical data 
encryption [1–3] and optical steganography [4–10] have been explored for securing networks 
at the optical layer. Optical encryption enables low latency and high speed encryption without 
the generating electromagnetic signatures [11]. In particular, optical chaos encryption has 
been widely studied during the past decade [12–14]. Using spread spectrum techniques to 
encrypt data in a broadband chaotic signal, optical chaos encryption enhances the robustness 
and privacy of the system. Optical steganography, on the other hand, provides a way to hide 
private data within the existing public channel so no one, apart from the intended recipient, 
knows the existence of the message [4]. Transmitting such private data is called a “stealth 
channel.” Without knowing information about the encryption process in the stealth channel, 
the eavesdropper can neither demodulate the private data nor know the existence of the stealth 
channel. Previous approaches to optical steganography based on stretching an optical pulse 
through chromatic dispersion [5], combined with different modulation methods of public 
channel, have been studied [5–10]. Although widely stretched and low amplitude pulses can 
be buried in the system noise, the optical spectrum of the stealth channel signal is still not 
sufficiently wide to perfectly match the spectrum of the system noise. A better solution is not 
to mimic the system noise, but to use the system noise directly to transmit the stealth signal. 

Erbium doped fiber amplifiers (EDFAs) are widely deployed in today’s optical 
communication systems. Although amplified spontaneous emission (ASE) noise from EDFAs 
is undesirable from the perspective of system performance [15], we can benefit from it in the 
area of photonic network security. We propose to add private signals on top of the ASE noise 
and thus hide them plain sight. Since ASE already exists as noise in optical systems, and ASE 
carrying signals have identical spectra as the original noise ASE, an eavesdropper will not be 
able to differentiate whether it is “signal ASE” or “noise ASE” by observing the spectrum. 
Another benefit of ASE noise is its short coherence length. Using optical homodyne detection 
[16], the optical delay length has to be exactly matched at the receiver for the signal to be 
demodulated. This enables the system to have a key for modulation and demodulation. An 
eavesdropper has to search a large range of delay lengths to satisfy the matching condition 
and demodulate the signal. 

In this paper, we make use of ASE noise as the source of the stealth channel. Utilizing the 
short coherence length characteristic of ASE noise, we use DPSK modulation for the stealth 
channel at the transmitter, and use homodyne detection to demodulate the signal at the 
receiver. The optical delay length difference at the transmitter is the key for demodulation, 
which can be several meters. To demodulate the signal without knowing the length difference, 
the eavesdropper needs to scan the entire length difference to search for the matching 
condition. The scan has to be precise enough to observe the coherenc length of ASE noise, 
which is only 372µm. To further prevent the delay length difference from being detected, we 
use motorized controlled delay lines at both the transmitter and receiver. Controlled by two 
separate computers, the receiver delay line can follow the movement of the transmitter 
delay—a “hopping” key. As a consequence, even if the eavesdropper can scan delay line 
difference and find the matching condition, this process will not be fast enough to find the 
matching condition before the key changes. Moreover, DPSK is used in the pubic channel. 
The phase modulated public channel provides both signal and noise with constant power to 
the system, so the stealth channel can hide in the noise secretly all the time. 
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2. Experimental setup 

The experimental setup makes use of the short coherence length of ASE noise, and the 
structure of the stealth channel is a Mach-Zehnder (MZ) interferometer (see Fig. 1). The 
carrier for the stealth channel comes directly from an EDFA. The EDFA generates ASE noise 
which has the same characteristics as the ASE noise that exists in the pubic channel. The ASE 
noise is then input into the MZ interferometer. The stealth signal is modulated onto one arm 
of the interferometer using a phase modulator. The public channel employs DPSK modulation 
using a laser source having wavelength 1551.72 nm. To simulate the ASE noise that would be 
introduced by EDFAs in a long distance transmission system, additional ASE is added at the 
public channel transmitter. The public channel and stealth channel are combined by a 50:50 
coupler and sent over 25 km of standard single mode fiber (SSMF), followed by dispersion 
compensation fiber (DCF). Three wavelength division multiplexer (WDM) filters are 
connected in series to spectrally separate the stealth channel from the public channel. The 
stealth channel receives the signal from the reflection output of the third WDM filter. The 
public channel receives the transmission output of the first WDM filter. The transmitter and 
receiver of the stealth channel actually represent a large Mach-Zehnder interferometer. There 
are two pairs of optical paths: path 1→3, 2→4 and path 1→4, 2→3 (see Fig. 1). Line 1 is 6m 
longer than line 2. Because ASE noise has a very short coherence length, which we measured 
to be 372 µm (as detailed in Section 3), interference can only occur when the length of one 
pair of the light paths matches exactly with that of the corresponding other pair. In this 
experiment, light path 1→3 and light path 2→4 have the same length. Two tunable delay lines 
are used. One is at the transmitter and the other is at the receiver. They are controlled by two 
separate computers which share a secret key. Thus, if tunable delay 1 (T1) moves to a new 
position, tunable delay 2 (T2) is instructed to mimic that movement, and reestablish the 
matching condition. 

 

Fig. 1. Experimental Setup (EDFA: erbium-doped fiber amplifier; P: polarizer; ASE: amplified 
spontaneous emission; PM: phase modulator; PD: phase demodulator; SSMF: standard single 
mode fiber; DCF: dispersion compensation fiber; WDM: wavelength division multiplexer). 

The fiber-based Mach-Zehnder interferometer is sensitive to temperature and mechanical 
vibration [17]. The temperature and mechanical vibrations can cause the eye diagram and bit 
error rate (BER) at the receiver of the stealth channel to vary as a function of time. To 
minimize these effects, we: (1) packaged the interferometers both at the transmitter and 
receiver of the stealth channel; and (2) Physically stabilized all the fibers. Using this method, 
the eye diagram can stay stable for up to 5 s, which is long enough to measure the BER at a 
given signal power. For deployed transmission systems, industry standards for stability 
control would be required. 
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3(a)) and on (see Fig. 3(b)). The power of the signal ASE is 14.5 dB lower than the public 
channel, so the power change with and without 



 

Fig. 4 (a) Spectrum of the signal before entering the 25 km of SSMF and DCF. (AASE: 
additional ASE) (b) Spectrum before and after the WDM filter.  

3.3 Power penalty of the system 

The BER measurements of the stealth channel show that adding the public channel to the 
system does not result in a power penalty of stealth channel. In Fig. 5(a), the BER curves of 
the stealth channel with and without the public channel are indistinguishable. This is because 
the ASE noise covers a large range of spectrum from 1520 nm to 1560 nm (see Fig. 4(a)), 
whereas the public channel is only at a single wavelength of 1551.72 nm, which can easily be 
filtered from the stealth channel. However, we note that there is a power penalty of 6.5 dBm 
when additional ASE with the same power as the signal ASE is added. This is because 
additional ASE has the same spectrum as ASE carrying stealth signals. They cannot be 
separated by optical filters, so more power is required to reach the same BER when additional 
ASE is added. The BER reaches a noise floor at 10−6. The power penalty is qualitatively 
observed from the degradation in the eye diagram of the stealth channel in Fig. 3(e) with more 
jitter and smaller eye opening. The additional ASE saturates the EDFA of the stealth channel 
and causes the amplitude of eye to be smaller.



 

Fig. 5. BER performance versus received signal power for: (a) the stealth channel with and 
without public channel and AASE, data after the noise floor is not considered in the linear fit 
with AASE. The inset shows the penalty from additional ASE at different ratio of addition 
ASE to signal ASE. (b) The public channel with and without the stealth channel and additional 
ASE. 




