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Abstract—We propose an original design for a neuron-inspired
photonic computational primitive for a large-scale, ultrafast cog-
nitive computing platform. The laser exhibits excitability and be-
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Fig. 5. Simulation results of an SA laser behaving as an LIF neuron. Ar-
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A network of excitable lasers connected via weights and
delays—consistent with the model described in Section II-A—
can be described as a delayed differential equation (DDE) of the
form:

d

dt
x⃗(t) = f(x⃗(t), x⃗(t − τ1), x⃗(t − τ2) . . . x⃗(t − τn )) (10)

where the vector x⃗(t) contains all the state variable associated
with the system. The output to our system is simply the output
power ⃗Pout(t)
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Fig. 10. (a) Bistability schematic—In this configuration, two lasers are con-
nected symmetrically to each other. (b) A simulation of a two laser system
exhibiting bistability with connection delays of 1 ns. The input perturbations
to unit 1 are plotted, followed by the output powers of units 1 and 2, which
include scaled version of the carrier concentrations of their gain sections as the
dotted blue lines. Excitatory pulses are represented by positive perturbations
while inhibitory pulses are represented by negative perturbations. An excitatory
input excites the first unit, causing a pulse to be passed back and forth between
the nodes. A precisely timed inhibitory pulse terminates the sequence.
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unit expansion of each node in the multistability circuit from
Fig. 10(a). Like the multistability circuit, recursion allows the
synfire chain to possess hysteric properties; however, the use of
two lasers for each logical node provides processing redundancy
and increases reliability. Once the spike pattern is input into the
system as excitatory inputs injected simultaneously into the first
two lasers, it is continuously passed back and forth between
each set of two nodes. The spatiotemporal bit pattern persists
after several iterations and is thereby stored in the network as
depicted in Fig. 11(b).

C. Spatiotemporal Pattern Recognition Circuit

The concept of polychrony, proposed by Izhikevich [42] is
defined as an event relationship that is precisely time-locked to
firing patterns but not necessarily synchronous. Polychroniza-
tion presents a minimal spiking network that consists of cortical
spiking neurons with axonal delays and synaptic time dependent
plasticity (STDP), an important learning rule for spike-encoded
neurons. As a result of the interplay between the delays and
STDP, spiking neurons spontaneously self-organize into groups
and generate patterns of stereotypical polychronous activity.

One of the key properties of polychronization is the ability
to perform delay logic to perform spatiotemporal pattern recog-
nition. As shown in Fig. 12(a), we construct a simple three
unit pattern recognition circuit of excitable lasers with carefully
tuned delay lines, where each subsequent neuron in the chain
requires stronger perturbations to fire. The resulting simulation
is shown in Fig. 12(b). Three excitatory inputs separated se-
quentially by ∆t1 = 5 ns and ∆t2 = 10 ns are incident on all
three units. The third is configured only to fire if it receives an
input pulse and pulses from the other two simultaneously. The
system, therefore, only reacts to a specific spatiotemporal bit
pattern.

Although this circuit is simple, the ability to perform temporal
logic implies that excitable, neuromorphic systems are capable
of categorization and decision making. Two existing applica-
tions utilize temporal logic, including light detection and rang-
ing sensitivity that is analogous to an owl’s echolocation system
and the escape response of a crayfish [54], [55]. Combined
with learning algorithms such as STDP which has recently been
demonstrated in optics [56], networks could potentially perform
more complex tasks such as spike-pattern cluster analysis.

V. DISCUSSION

A. Comparing Technological Platforms

Cortically-inspired microelectronic architectures have tradi-
tionally targeted biological time scales. Several proposals [3],
[57] suggest using a crossbar array to network neurons together,
essentially a dense mesh of wires overlaying the CMOS (pro-
cessor) substrate. This is to achieve a massive fan-in and fan-out
per connection, which is typical in neural networks but less
critical in conventional processors. Several popular approaches
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The ability to make a technology that complements the phys-
ical constraints that guide it, rather than abstracting them away
entirely, represents an important step in streamlining efficiency
and performance. Optics is a perfect fit for high bandwidth spike
information and could represent a highly efficient processing
scheme that ties closely to its underlying physics.

B. Improvements Over Previous Models

Past photonic neurons have demonstrated important features
of biological neurons but did not integrate enough properties
together to make effective processors. One of the first imple-
mentations of a photonic spiking neuron [15] achieved noise
suppression and thresholding through a nonlinear optical loop
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