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Abstract: We propose an equivalent circuit model for photonic spike pro-
cessing laser neurons with an embedded saturable absorber—a simulation
model for photonic excitable lasers (SIMPEL). We show that by mapping
the laser neuron rate equations into a circuit model, SPICE analysis can be
used as an efficient and accurate engine for numerical calculations, capable
of generalization to a variety of different types of laser neurons with sat-
urable absorber found in literature. The development of this model parallels
the Hodgkin–Huxley model of neuron biophysics, a circuit framework
which brought efficiency, modularity, and generalizability to the study of
neural dynamics. We employ the model to study various signal-processing
effects such as excitability with excitatory and inhibitory pulses, binary
all-or-nothing response, and bistable dynamics.
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the dynamics of individual units, which are fundamentally driven by differential equation mod-
els.

1.1. Our contribution

Here, we propose SIMPEL—SImulation Model for Photonic Excitable Lasers—which bridges
the gap between the underlying physics and relevant dynamics of excitable lasers by trans-
forming its rate equations to an equivalent circuit representation. We show that this circuit
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Fig. 1. Schematic of a biological neuron and a two-section excitable laser that share key
dynamical properties. In the LIF neuron model, weighted and delayed input signals are
spatially summed at the dendritic tree into an input current, which travel to the soma and
perturb the internal state variable, the voltage. The soma performs integration and then ap-
plies a threshold to make a spike or no-spike decision. After a spike is released, the voltage
is reset. The resulting spike is sent to other neurons in the network. The excitable laser is
composed of a gain section, SA, and mirrors for cavity feedback. The inputs selectively
perturb the gain optically or electrically. The gain medium acts as a temporal integrator
while the SA acts as a threshold detector; it extracts most of the stored energy from the
gain medium into the optical mode. These dynamics emulate excitability, one of the most
critical properties of a spiking neuron.

negative, and delayed by t j resulting in a time series that is spatially summed. This aggregate
input induces an electrical current, Iapp = Vm(t)∑

N
j=1 w jx j(t � t j) between adjacent neurons,

where the membrane potential Vm(t), the voltage difference across their membrane, acts as the
primary internal (activation) state variable. The weights and delays determine the dynamics of
network, providing a way of programming a neuromorphic system. The soma acts as a first-
order low-pass filter or a leaky integrator, with the integration time constant tm = RmCm that



Vm(t) recovers from Vreset to the resting potential VL in which is difficult to induce the firing
of a spike. Consequently, the output of the neuron consists of a series of spikes that occur at
continuously valued times. There are three influences on Vm(t): passive leakage of current, an
active pumping current, and external inputs generating time-varying membrane conductance
changes. Including a set of digital conditions, we arrive at a typical LIF model for an individual
neuron:

dVm(t)
dt| {z }

Activation

=
VL

tm|{z}
Active pumping

� Vm(t)
tm| {z }
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+
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External input

; (1a)

if Vm(t) > Vthresh then (1b)
release a pulse and set Vm(t)!Vreset.

2.2. Excitable laser model

Next, we briefly summarize the recently discovered mathematical analogy between the LIF
neuron model and an excitable laser composed of a gain section with an embedded SA [7, 38]
as illustrated in Fig. 1. The gain medium acts as a temporal integrator with a time constant
that is equal to the carrier recombination lifetime. The SA extracts most of the stored energy
from the gain medium into the optical mode and performs the function of a threshold detector.
This gain-absorber interplay emulates one of the most critical dynamical properties of a spiking
neuron—excitability.

The Yamada model [39], describes the behavior of lasers with independent gain and SA
sections with an approximately constant intensity profile across the cavity. We assume that
the dynamics operate such that the gain is a slow variable, while the intensity and loss
are both fast. This three-dimensional dynamical system can be described with the following
equations: (1) Ġ(t) = gG [A�G(t)�G(t)I(t)]; (2) Q̇(t) = gQ [B�Q(t)�aQ(t)I(t)]; and (3)



Comparing this to the LIF model, or equation (1), the analogy between the equations be-
comes clear. Setting the variables gG



3.2. Equivalent circuit

For a given set of injection currents fIa; Isg in the gain and SA regions, operating point analysis
of the excitable laser described by the rate equations (3)–(5) and output power (6) leads to four
solutions. In addition to the correct nonnegative solution regime, in which the solutions for the
photon density Nph, and carrier densities na and ns, are all nonnegative when Ia � 0 and Is � 0,
there are also negative-power and a high-power regimes. It is therefore necessary to transform
the carrier population density in the respective cavities nc and the laser output power Pout via
the following pair of transformations, respectively [41]:

na = neq;a exp
� qva

nkT

�
(7)

ns = neq;s exp
� qvs

nkT

�
(8)

Pout = (vm +d )2 (9)

where neq;c is the equilibrium carrier density, vc is the voltage across the gain and SA region of
the laser, n is a diode ideality factor (typically set to two for III-V devices [44,45]), vm is a new
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Fig. 6. (a) Laser neuron circuit setup to investigating bistable dynamics. Note that the dc
biasing conditions have been left out for the sake of brevity. (b) Simulation of the excitable
VCSEL neuron system exhibiting bistability with connection delays of 4 ns. Top row: in-





Hodgkin–Huxley model [36]. While variable latency can lead to jitter in synchronous systems,
it has also been proposed as a mechanism for converting continuous amplitude to spike-timing




