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Introduction



1. INTRODUCTION

section 4, various possibilities in modelling the magnetic �eld are considered. Section 5 describes

the computational methods used to generate data sets and plots. Finally, in section 6.4 we discuss

our density distributions in the context of the eclipse light curve and the reasonably successful

model due to Lyutikov and Thompson (2005).
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2

PSR J0737-3039

PSR J0737-0309 is the �rst known double pulsar binary system, and aside from being a labo-

ratory for precise tests of General Relativity it has provided a unique opportunity to study the

absorption of radio frequency radiation from one pulsar in the magnetosphere of the other.

2.1 Basic Parameters

Pulsar B’s radius is taken to be �10 km, and its mass is about 1.25 solar masses. It orbits with

A around their center of mass with a semimajor axis of 8.8�108 m a eccentricity 0.088, with

a period of 2.45 hours. A and B’s spin periods are 23 ms and 2.8 s respectively, and both are

visible in the radio spectrum1. B’s dipole moment is estimated as approximately 3:5�1026 J/T.

Figure 2.1: Geometry of the eclipse, with origin at pulsar B and z-axis normal to the orbital plane.

The spin axis 
B makes an angle �
 with the z-axis, and the magnetic dipole moment �B makes at

an angle � to 
B . (Figure from Lyutikov and Thompson (2005))

2.2 Eclipse Light Curve

The orbit is nearly (but not quite) edge on as viewed from Earth, so that once per orbit pulses

from A pass through B’s magnetosphere with some impact parameter z0. The intensity of

radiation recieved from A is modulated in time over the �30s eclipse, showing largely opaque

periods as well as nearly transparent windows at the �rst and second harmonics of pulsar B’s spin

frequency (see �g. 2.2). These features are explained fairly well by Lyutikov and Thompson

(2005) using a simple geometric model of pulsar B’s magnetosphere as a rigidly rotating oblique

1Breton et al. (2008)

3



2. PSR J0737-3039

Figure 2.2: Light intensity curves from three eclipses of J0737-0309 A by B are shown; the bottom

panel is the average of the three. The dotted vertical lines represent the timing of pulses from B.

(McLaughlin et al., 2004)

magnetic dipole, with constant plasma density along those �eld lines with maximum extension

between some inner and outer radius R� < Rmax < R+, measured at the magnetic equator.

Field lines closing inside or outside this radius are given zero density. These assumptions are

contrary to those of this thesis, as our method gives varying density along �eld lines. Their

model is successful enough, however, that a detailed study was carried out using our method

with their best �t parameters wherever possible. The implications of our method in the context

of Lyutikov and Thompson (2005) are discussed in section 6.4. They provide best �t values for

the parameters R�, R+, the angles �
, �
 and �, and the impact parameter z0 (see Fig. 2.1).

Of primary interest to this thesis are R+ and �, since the computation described in section 5

calculates a density pro�le but does not go as far as to simulate the eclipse. R+ can be used

to limit the computation to a region comparable to the size of the magnetosphere (i.e. the

half-width of the eclipsing material, which is determined from the duration of the eclipse and

the orbital radius and period to be � 1:5� 107 m). One needs such a limit, as the assumption

of corotation breaks down at the light cylinder. Additionally, under the strict assumption of

corotation the density calculation diverges for �eld lines approaching the light cylinder, and the

maximum density attained in a calculation depends strongly on the limit R+. Lyutikov and

Thompson’s best �t value for the angle � between the dipole moment and the rotation axis is

� 75�, and this is taken as a starting point for our investigations.
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The Magnetosphere at Equilibrium

The computational tool making this study of the magnetosphere possible is an integral of the

motion due to Henriksen and Rayburn (1973); some key points of the derivation are summarized

here. The notation primarily follows that of Fock (1964), taking the (+ { { {) convention for

the Minkowski metric.

We consider the region surrounding a pulsar isolated from external gravitational in
uences (in

the context of PSR J0737-3039, we neglect the e�ect of pulsar A’s gravity on B’s magnetosphere).

The surrounding matter is treated as a single 
uid plasma with stress-energy-momentum tensor

(see Fock (1964))

T��M = (�� + p=c2)u�u� � pg�� : (3.1)

where p is the pressure, �� is the total mass density in the local inertial frame (including the

mass equivalent of the plasma’s compressional potential energy), and u� is the four velocity.

The metric g�� is taken to be the Schwarzschild metric, with line element

ds2 = g��dx
�dx� =

�
1� 2GM

rc2

�
c2dt2 � 1

1� 2GM
rc2

dr2 � r2(d�2 + sin2 �d�2): (3.2)

De�ning

 � 1� 2GM

rc2
; (3.3)

the four velocity is

u� =

�

p
 

�
dx�

dt


 =
1q

1� _r2= +r2 _�2+r2 sin2 � _�2

c2 

: (3.4)

Under the assumption that the plasma corotates with the pulsar, 
 simpli�es to


 =
1q

1� r2 sin2 �
2

c2 

: (3.5)

This implies a light cylinder radius of Rlc =  c

 , which is close to the value c


 seen throughout

the literature since  � (1� 3� 10�5) at this radius.
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3. THE MAGNETOSPHERE AT EQUILIBRIUM

The use of the Schwarzschild metric in describing the geometry around a pulsar is justi�ed

under several assumptions:

� It is a vacuum solution, so is a good approximation only if the total gravitational e�ect of

the magnetosphere is negligible compared to that of the pulsar. We believe this to be the

case, since the plasma is many orders of magnitude less dense than a neutron star interior.

� It assumes a spherically symmetric mass distribution as the source of gravitation. In reality

the mass distribution is distorted due to centrifugal e�ects.

� It neglects the e�ects of the pulsar’s rotation on the geometry, so we require that the

pulsar’s angular momentum J is not too large. A more complex treatment could be

done using the Kerr metric, which reduces to the Schwarzschild metric in the limit that

J
Mc2r

� 1. The angular momentum of a pulsar is di�cult to predict since the equation

of state is unknown, and thus the moment of inertia cannot be calculated. As a rough

estimate, we idealize pulsar B as a uniform sphere (radius �10 km) with moment of inertia

I = 2
5MBR

2
B to �nd

J

Mc2r
� 2

5

R2
B
B

c
� 3� 10�5RB

r
(3.6)

which in our calculation, is at most 3�10�6. In light of this, the gravitational e�ects of

pulsar B’s rotation should be negligible; however, it should be noted that the moment of

inertia is unknown by a large factor, and the Kerr geometry will begin to become signi�cant

for faster-spinning pulsars.1

Under these assumptions, we proceed in using the Schwarzchild metric in the corotating

frame with the understanding that the calculation is restricted to the region Rpulsar < r < Rlc.

Rlc is the "light cylinder" beyond which the assumption of corotation would imply velocities

greater than c. Due to the strong magnetic �eld, we suppose that charged particles are con�ned

to magnetic �eld lines, executing helical motion. Field lines that close a reasonable distance

within the light cylinder may then be capable of supporting an equilibrium density of plasma.

Adding the electromagnetic �eld tensor to the equation 3.1 gives the total mass-energy-

momentum tensor T�� . The equations of motion follow from the conservation laws given by

setting the covariant derivative of T�� equal to zero.

T�� = T��M + T��E

T�� ;� = 0 (3.7)

1The double pulsar system may allow a unique opportunity to measure the moment of inertia of pulsar A





3. THE MAGNETOSPHERE AT EQUILIBRIUM
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4. MAGNETIC FIELDS

(4.1)

Here the polar angle � refers to the axis of rotation, � is the angle between the rotation axis

and the e�ective magnetic dipole moment, and � = �� r
Rlc


t (See Higgins (1996)).

The magnetic Deutsch �eld reduces to a magnetic dipole for Rpulsar � r � Rlc. Considering

that the eclipsing material of pulsar B has a half-width of �1.4�107 m 1 and the light cylinder is

about 1.3�108 m, the Deutsch �eld will begin to give distinct results in the outer magnetosphere.

Figure 4.1: A selection of Deutsch magnetic �eld lines that close within the light cylinder is

shown at left, where the large circle represents the light cylinder. At right, a selection of open

Deutsch magnetic �eld lines is shown on a larger scale, where the small circle now represents the

light cylinder. (�gures from Henriksen and Higgins (1997))

Deutsch �elds have been used in describing the exterior of a pulsar, for example by Henriksen

and Higgins (1997), Quadir et al. (1980) and McDonald and Shearer (2009).

4.3 Plasma Fields

The Deutsch �elds are vacuum solutions to Maxwell’s Equations, and thus completely neglect

the electromagnetic �elds due to the 
ow of plasma in the magnetosphere. The plasma �elds

could in principle be added to the Deutsch �elds by the principle of superposition; the problem

is then to self-consistently solve for the charge and current densities and electromagnetic �elds.

This is a daunting task both analytically and computationally, and is beyond the scope of this

paper. See McDonald and Shearer (2009) for a 3D computation that self-consistently �nds

equilibrium charge distributions using a superposition of Deutsch �elds and plasma �elds.

1Lyutikov and Thompson (2005)
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Numerical Density Calculation

A major analytical di�culty is the loss of symmetry when the angle � between the dipole moment

and the axis of rotation is nonzero, which seems to be necessary in describing a real pulsar. For

http://root.cern.ch


5. NUMERICAL DENSITY CALCULATION

The reference points should be chosen with the limiting radius in mind, since the �eld lines



6

Results and Discussion

6.1 Dependence on �

Without knowledge of the equation of state of the plasma, we must choose a value of � in the

relation p / �� . Three choices of � between 1 and 2, and the corresponding density distributions

are shown in Figure 6.1.

Figure 6.1: The axisymmetric case is shown for three values of �: � = 1:



6. RESULTS AND DISCUSSION

Figure 6.2: The axisymmetric case, with the magnetic dipole calculation at left and the calculation

using Deutsch �elds at right, for �eld lines that close within 1.5�107m.

Figure 6.3 shows the dipole �eld (left) and the Deutsch �eld in the extreme case in which the

dipole moment is orthogonal to the rotation axis (� = �=2). Field lines closing within 0:5Rlc

are plotted. The distortion in the dipolar structure of the Deutsch �elds can clearly be seen for

�eldlines extending along the z-axis, while the �eld lines near the rotational equator z = 0 do

not extend as far radially and more or less maintain their dipolar shape. Note that the upper

right panel of �gure 6.3 shows the Deutsch magnetosphere to be narrower horizontally than

the dipole �elds; this is due to the Deutsch �elds beginning to twist at large radii, as seen by

comparing the bottom two panels. The viewing angle in the top right panel does not necessarily

show the Deutsch magnetosphere at its maximum width, as is the case in the top left panel.

6.3 Comparison with McDonald and Shearer (2009)

McDonald and Shearer (2009) use a superposition of Deutsch �elds and plasma �elds in a 3D

simulation to �nd stable charge distributions by self-consistently moving charges around until

a stabilty condition is met. It is important to recognize the distinction between this type of

simulation and the one carried out in this thesis: McDonald and Shearer (2009) �nd distributions

of non-neutral plasma in which the electromagnetic forces are balanced, while our calculation

�nds mass distributions when the thermal, gravitational and centrifugal e�ects are balanced

(under the assumption that the electrostatic e�ects of the charge separation are negligible). A

full simulation including these e�ects in a plasma density calculation would be an ambitious,

but potentially worthwhile endeavour.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.3: The orthogonal case, restricting �eld lines to one half of the light cylinder radius,

�6.7�107m. The left �gures shows the dipole �elds and the right �gures shows the Deutsch �elds;

the bottom �gures are the same calculations rotated by 90� so that the dipole moment is out of

the page. Using � = 1:8, the dipole calculation had a relative maximum and minimum density of

250 and 1�10�4, while the maximum and minimum for the Deutsch �eld calculation were 245 and

1�10�3 respectively.

6.4 Comparison with Lyutikov and Thompson (2005)

Lyutikov and Thompson model the density in the magnetosphere as being concentrated uni-

formly on a set of �eld lines with maximum extension within a fairly narrow range R� <

Rmax < R+. The assumption of constant density along �eld lines is contrary to our approach.

Further, their criterion for the maximum radius is based on estimates of the "size" of the magne-
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6. RESULTS AND DISCUSSION

tosphere, and so they measure this radius with respect to the magnetic equator; as a result the

limiting �eldlines, and thus the density distribution, are axially symmetric about the magnetic

axis. Equations 3.9 and 3.10 suggest that the density distribution should be axially symmet-

ric about the rotation axis, at least for initial points satisfying this symmetry; however when

we restrict the calculation to �eld lines that close within a certain radius we obtain a density

distribution that is not symmetric about either axis. When our calculation is restricted to a

similar maximum radius we �nd relative densities ranging from 1 at the initial radius r = 100km

down a minimum of about 1�10�4 (blue) before increasing to about 4.5 (red), when the param-

eter � = 1:8. Lower values of � have the e�ect of increasing the maximum and decreasing the

minimum. Given these considerations, we raise two issues with the model due to Lyutikov and

Thompson (2005):

1. Their selection of which �eld lines to include uses a maximum distance measured along the

magnetic equator, rather than along the equator of rotation. In our model we suppose that

the ability of a �eld line to support an equilibrium plasma density depends on how closely

it approaches to the light cylinder, and so the shape of the limiting �eld lines we include

depends on the angle �. In �tting the angle �, Lyutikov and Thompson’s magnetosphere

stays the same shape.

2. Their model neglects to consider the equilibrium density along �eld lines, and assuming

constant density seems to be a gross oversimpli�cation.

As a possible explanation of their results, we note that the high density regions we calculate

seem to lie approximately in a plane, which is not normal to the dipole moment or the axis

of rotation, but is inclined somewhere between. If this was primarily the matter a�ecting the

eclipse, then under Lyutikov and Thompson’s assumptions the dipole moment is normal to

this plane, which leads to an underestimation of the angle �. One can then ask if there is

angle �, in our model, which gives a density distribution concentrated around a plane normal to

Lyutikov and Thompson’s best �t for the parameter �, in the hopes that our density distribution

can reproduce the eclipse light curve with a di�erent value of �. Figures 6.7 and 6.8 show

calculations with the Deutsch �elds for � = 80� and � = 85� respectively. As � approaches 90�

the distribution becomes complicated, but we attempt to draw a line (really a plane extending

into the page) around which the density distribution is roughly centered.

This idea weakly suggests that the angle � is closer to 90� than predicted by Lyutikov and

Thompson (2005), though a detailed study is clearly necessary since our density curves are

drastically di�erent than theirs.

16





6. RESULTS AND DISCUSSION

Figure 6.5: Using the same parameters as in 6.4, but restricting the �eld lines to those close within

one quarter of the light cylinder radius, as measured at the rotational equator. Signi�cant di�erences

between the �elds are still seen. The bottom frames show the same calculations rotated by 90�. In

the dipole calculation the relative density reached a maximum of 36 and a minimum of 3.5�10�4,

and in the Deutsch �eld calculation it reached a maximum of 35.9 and a minimum of 7.7�10�4.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.6: Once again using the same parameters as in 6.4, we now restrict the �eld lines to those

close within 1.5�107m � 0:11Rlc, as measured at the rotational equator. The �elds appear similar at

this scale. The bottom frames show the same calculations rotated by 90�. In the dipole calculation

the relative density reached a maximum of 4.61 and a minimum of 9.5�10�4, and in the Deutsch

�eld calculation it reached a maximum of 4.63 and a minimum of 9.4�10�4.
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6. RESULTS AND DISCUSSION

Figure 6.7: The Deutsch �eld lines closing within 1.5�107m are shown for � = 80�. A line is drawn

representing a plane about which the density is roughly centered. A perpendicular line represents

the normal to this plane, which Lyutikov and Thompson’s analysis implicitly takes to coincide with

the dipole moment. We �nd this line to be at an angle of about 68�, though placement of the line

is very subjective.
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6.4 Comparison with Lyutikov and Thompson (2005)

Figure 6.8: The Deutsch �eld lines closing within 1.5�107m are shown for � = 85�. A line is drawn

representing a plane about which the density is roughly centered, but in this case the distribution is

more complicated and the uncertainty in the slope is even larger. We give a value of about 77� for

angle the normal to this plane makes with the rotation axis, though we recognize that the distribution

takes on a new structure as � approaches 90�.
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6. RESULTS AND DISCUSSION
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7

Conclusions

Our approach is novel to that in the literature, and gives results inconsistent with the ideas

of Lyutikov and Thompson (2005) in particular. The shape of the absorbing material, as well

as the plasma density distribution within it, is seen to change with the angle �. The density

along �eld lines closing within some radius decreases away from the pulsar until the e�ects of

corotation become signi�cant and the density rises dramatically. It is clear that a full simulation

of the eclipse light curve, along with an independent �tting of parameters, is necessary in order

to fully evaluate our model in the context of the pulsar B. Our results di�er drastically from

Lyutikov and Thompson’s, so it is not clear whether or not a best �t to our model would provide

a slight modi�cation of their parameters or a completely di�erent set of parameters.

Within the radius r = 1:5 � 107



7. CONCLUSIONS
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